ANÁLISE IN SILICO DA VARIABILIDADE GENÉTICA DO ONCOGENE E5 DO HPV 16
DOI:
https://doi.org/10.64671/ts.v23i1.65Keywords:
Papilomavírus Humano 16, Oncogene, Neoplasias do Colo UterinoAbstract
Introdução: O Papilomavírus humano (HPV) é o responsável por causar diversos tipos de cânceres, destacando-se o cervical, e as lesões genitais, sendo o oncogene E5 pertencente a esse patógeno importante para seu potencial oncogênico. Objetivo: Analisar a variabilidade genética in silico do gene E5 das sequências gênicas do HPV 16. Método: Trata-se de um estudo descritivo, quanti-qualitativo, ao apresentar o mapeamento e quantificar as regiões polimórficas do gene E5. Para a coleta das sequencias gênicas, foi utilizado o banco de dados genômicos do National Center for Biotechnology Information (NCBI). As sequências gênicas foram coletadas no formato FASTA. Posteriormente, foi utilizado o programa CLUSTALW, do pacote de dados do software MEGA6, para a realização do alinhamento múltiplo das sequências, permitindo a identificação de sítios polimórficos entre duas ou mais sequências gênicas. Resultados: As análises das variações do oncogene E5 do HPV16 revelaram a existência de vários sítios polimórficos, bem como as variações encontradas nas sequencias das variantes, em relação à sequência protótipo K02718. Em relação ao mapeamento dos epítopos foi observado que a sequência da oncoproteína 16E5 da amostra de referência K02718, formou epítopos imunogênicos com moléculas pertencentes ao MHC-I (HLA-A e HLA-B) e MHC-II (HLADR), sendo as moléculas complexo HLA-A estão mais relacionadas com a ação da oncorproteína 16E5. Conclusões: O estudo dos epítopos imunogênicos é útil para o planejamento da identificação de progressões carcinogênicas precoces, sendo a biologia computacional uma nova vertente de estudo científico para identificação e ação inicial para o desenvolvimento de estratégias imunoterapêuticas.
References
ASHRAFI, G. Hossein et al. E5 protein of human papillomavirus type 16 selectively downregulates surface HLA class I. International Journal Of Cancer, [s.l.], v. 113, n. 2,
p.276-283, jan. 2004.
BERNARD, Hans-ulrich et al. Classification of papillomaviruses (PVs) based on 189 PV types and proposal of taxonomic amendments. Virology, [s.l.], v. 401, n. 1, p.70-79, maio 2010.
BIBLE, Jon M. et al. Cervical lesions are associated with human papillomavirus type 16
intratypic variants that have high transcriptional activity and increased usage of common mammalian codons. Journal Of General Virology, [s.l.], v. 81, n. 6, p.1517-1527, jun. 2000.
BURK, Robert D.; HARARI, Ariana; CHEN, Zigui. Human papillomavirus genome
variants. Virology, [s.l.], v. 445, n. 1-2, p.232-243, out. 2013.
CAMPO, M. S. et al. HPV-16 E5 down-regulates expression of surface HLA class I and reduces recognition by CD8 T cells. Virology. v. 407, n.1, p. 137-142, nov. 2010.
CECCARELLI, Manuela et al. Head and neck squamous cell carcinoma and its correlation with human papillomavirus in people living with HIV: a systematic review. Oncotarget, [s.l.], v. 9, n. 24, p.17171-17180, mar. 2018.
CHAGAS, Bárbara S. et al. New variants of E6 and E7 oncogenes of human papilomavírus type 31 identified in Northeastern Brazil. Gynecologic Oncology, [s.l.], v. 123, n. 2, p.284- 288, nov. 2011.
CHAGAS, Bárbara Simas et al. Novel E6 and E7 oncogenes variants of human papillomavirus type 31 in Brazilian women with abnormal cervical cytology. Infection, Genetics And Evolution, [s.l.], v. 16, p.13-18, jun. 2013.
CORDEIRO, Marcelo Nazário et al. Anti-tumor effects of genetic vaccines against HPV major oncogenes. Human Vaccines & Immunotherapeutics, [s.l.], v. 11, n. 1, p.45-52, nov. 2014.
DIMAIO, Daniel; PETTI, Lisa M. The E5 proteins. Virology, [s.l.], v. 445, n. 1-2, p. 99-114, out. 2013.
DOORBAR, John. The E4 protein; structure, function and patterns of expression. Virology, [s.l.], v. 445, n. 1-2, p.80-98, out. 2013.
FREITAS, Antonio Carlos de et al. HrHPV E5 oncoprotein: immune evasion and related immunotherapies. Journal Of Experimental & Clinical Cancer Research, [s.l.], v. 36, n. 1, p.1-15, 25 maio 2017.
FREITAS, Antonio Carlos de et al. Susceptibility to cervical cancer: Na overview. Gynecologic Oncology, [s.l.], v. 126, n. 2, p.304-311, ago. 2012.
GURGEL, Ana Pavla Almeida Diniz et al. Prevalence of Human Papillomavirus Variants and Genetic Diversity in the L1 Gene and Long Control Region of HPV16, HPV31, and HPV58 Found in North-East Brazil. Biomed Research International, [s.l.], v. 2015, p.1 12, 2015.
HU, Xinrong et al. Oncogene lineages of human papillomavirus type 16 E6, E7 and E5 in preinvasive and invasive cervical squamous cell carcinoma. The Journal Of Pathology, [s.l.], v. 195, n. 3, p.307-311, ago. 2001.
KRÖGER, P. Molecular Biology Data: Database Overview, Modelling Issues, and Perspectives. Zorneding, 2001.
KUMAR, Anoop et al. Identification of immunotherapeutic epitope of E5 protein of human papillomavirus-16: An in silico approach. Biologicals, [s.l.], v. 43, n. 5, p.344-348, set. 2015.
LEE, S. I.; CATALANO, O. A.; DEHDASHTI, F. Evaluation of Gynecologic Cancer with MR Imaging,18F-FDG PET/CT, and PET/MR Imaging. The journal of nuclear medicine, v. 56, n. 3, March 2015.
LI, Ni et al. Human papillomavirus type distribution in 30,848 invasive cervical cancers worldwide: Variation by geographical region, histological type and year of publication. International Journal Of Cancer, [s.l.], v. 128, n. 4, p.927-935, 19 abr. 2010.
LI, N. et al. Persistence of type-specific human papillomavirus infection among Daqing City women in China with normal cytology: a pilot prospective study. Oncotarget, v. 8, n. 46, p. 81455-81461, Agosto 2017.
MCGUFFIN, L. J.; BRYSON, K.; JONES, D. T. The PSIPRED protein structure prediction server. Bioinformatics, [s.l.], v. 16, n. 4, p.404-405, abr. 2000.
MONFRÉ, Elaine Rodrigues Mello. Avaliação dos níveis de citocinas e HLA-G solúvel em linhagens celulares tumorais de colo uterino tratadas com alcalóides de Pterogyne nitens. 2011. xi, 176 f. Dissertação (mestrado) - Universidade Estadual Paulista, Faculdade de Ciências Farmacêuticas, 2011.
NATH, Rahul et al. Analyses of variant human papillomavirus type-16 E5 proteins for their ability to induce mitogenesis of murine fibroblasts. Cancer Cell International, [s.l.], v. 6, n. 1, p.1-9, ago. 2006.
PLESA, Adriana et al. Molecular variants of human papilloma virus 16 E2, E4, E5, E6 and E7 genes associated with cervical neoplasia in Romanian patients. Archives Of Virology, [s.l.], v. 159, n. 12, p.3305-3320, ago. 2014.
POTTER, C. D. et al. The European Society of Gynaecological Oncology/European Society for Radiotherapy and Oncology/European Society of Pathology Guidelines for the Management of Patients With Cervical Cancer. International Journal Of Gynecologic Cancer, [s.l.], v. 28, n. 4, p.641-655, maio 2018.
SAAVEDRA-PEDRAZA, A. et al. Molecular Bases of Human Papillomavirus Pathogenesis in the Development of Cervical Cancer. In: BROEK, D. V. (Ed.). Human Papillomavirus and Related Diseases - From Bench to Bedside - Research aspects. [s.l], 2012. ISBN: 978- 953-307-855-7.
SCHIFFMAN, M. et al. A Study of the Impact of Adding HPV Types to Cervical Cancer Screening and Triage Tests. Jnci Journal Of The National Cancer Institute, [s.l.], v. 97, n. 2, p.147-150, jan. 2005.
SCHIFFMAN, M.; Wentzensen, N. From human papillomavirus to cervical cancer. Obstetrics & Gynecology, v. 116, n. 1, p. 177-185, 2010.
SCHIFFMAN, M.; WENTZENSEN, N. Human Papillomavirus Infection and the Multistage Carcinogenesis of Cervical Cancer. Cancer Epidemiology Biomarkers & Prevention, [s.l.], v. 22, n. 4, p.553-560, abr. 2013.
SMITH, Benjamin et al. Sequence Imputation of HPV16 Genomes for Genetic Association Studies. Plos One, [s.l.], v. 6, n. 6, p. e21375, jun. 2011.
STEENBERGEN, Renske D.m. et al. HPV-mediated transformation of the anogenital tract. Journal Of Clinical Virology, [s.l.], v. 32, supl. 1, p.25-33, mar. 2005.
SUN, Zhengrong et al. Genetic variations of E6 and long control region of human papillomavirus type 16 from patients with cervical lesion in Liaoning, China. Bmc Cancer, [s.l.], v. 13, n. 1, p.1-8, out. 2013.
TAMURA, K. et al. MEGA5: Molecular Evolutionary Genetics Analysis Using MaximumLikelihood, Evolutionary Distance, and Maximum Parsimony Methods. Molecular Biology And Evolution, [s.l.], v. 28, n. 10, p.2731-2739, maio 2011.
TAMURA, K. et al. MEGA5: Molecular Evolutionary Genetics Analysis Using Maximum Likelihood, Evolutionary Distance, and Maximum Parsimony Methods. Molecular Biology And Evolution, [s.l.], v. 28, n. 10, p.2731-2739, maio 2011.
VENUTI, Aldo et al. Papillomavirus E5: the smallest oncoprotein with many functions. Molecular Cancer, [s.l.], v. 10, n. 1, p.140-158, nov. 2011.
ZHANG, Lei et al. Human papillomavirus infections among women with cervical lesions and cervical cancer in Eastern China: genotype-specific prevalence and attribution. Bmc Infectious Diseases, [s.l.], v. 17, n. 1, p.107-115, 31 jan. 2017.
ZHANG, Shen-ying et al. Human Toll-like receptor-dependent induction of interferons in protective immunity to viruses. Immunological Reviews, [s.l.], v. 220, n. 1, p.225-236, dez. 2007.
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Temas em Saúde

This work is licensed under a Creative Commons Attribution 4.0 International License.